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A semi-implicit �nite element model for non-hydrostatic
(dispersive) surface waves
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SUMMARY

The objective of this research is to develop a model that will adequately simulate the dynamics of
tsunami propagating across the continental shelf. In practical terms, a large spatial domain with high
resolution is required so that source areas and runup areas are adequately resolved. Hence e�ciency
of the model is a major issue. The three-dimensional Reynolds averaged Navier–Stokes equations are
depth-averaged to yield a set of equations that are similar to the shallow water equations but retain the
non-hydrostatic pressure terms. This approach di�ers from the development of the Boussinesq equations
where pressure is eliminated in favour of high-order velocity and geometry terms. The model gives
good results for several test problems including an oscillating basin, propagation of a solitary wave,
and a wave transformation over a bar. The hydrostatic and non-hydrostatic versions of the model are
compared for a large-scale problem where a fault rupture generates a tsunami on the New Zealand
continental shelf. The model e�ciency is also very good and execution times are about a factor of 1.8
to 5 slower than the standard shallow water model, depending on problem size. Moreover, there are
at least two methods to increase model accuracy when warranted: choosing a more optimal vertical
interpolation function, and dividing the problem into layers. Copyright ? 2005 John Wiley & Sons,
Ltd.
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INTRODUCTION

Surface waves have been a focus of interest from very early times—probably prehistoric times.
Their seemingly periodic motion at the seashore hides a much more complicated dynamics that
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is characteristic of gravity waves. Because modern engineering developments are increasingly
concentrated along the coastal margin and thereby subject to wave hazards, there is a need
for engineering tools and models to assess wave e�ects in the range of wave periods from
short period wind waves to tides. Hence, much scienti�c inquiry has gone into this subject.
By their nature, surface gravity waves are dispersive; that is, waves with di�erent frequen-

cies travel at di�erent speeds. For computational e�ciency and simplicity, models have tended
to cover a small part of the wave spectrum such as models based on the shallow water equa-
tions. Peregrine [1] was the �rst to extend these equations to derive a weakly dispersive model
using the Boussinesq equations. More recent research has extended these equations further to
include nonlinear and weakly dispersive waves [2, 3]. The basic idea with the Boussinesq
equations is to invert the vertical momentum equation to determine pressure, then calculate
the horizontal pressure gradients for inclusion into the horizontal momentum equation. This
procedure results in a set of equations that resemble the shallow water equations but con-
tain high-order correction terms. There is a signi�cant computational overhead for doing this,
approximately an order of magnitude with longer run times.
An alternative method that is pursued here is to retain the vertical momentum equation

with the non-hydrostatic pressure. These equations are depth-averaged to yield a set of equa-
tions that are similar to the shallow water equations but retain the non-hydrostatic pres-
sure terms. Stelling and Zijlema [4] presented such a scheme using explicit, �nite di�erence
methods. In the present paper, a similar method is developed for inclusion into a semi-implicit,
�nite element coastal ocean model [5]. Other �nite element approaches are reviewed in
Reference [6].
Of course, the full non-hydrostatic Navier–Stokes equations could be solved directly using z

levels [4, 7, 8] or � levels [9]. However, all these methods require the matrix solution of a
three-dimensional pressure Poisson equation which in the end dominates the computational
e�ort. In striving for higher e�ciency, the single layer depth-averaged approach is pursued
here. The aim here is to examine dispersive surface waves and not consider more complicated
internal dynamics such as internal bores.
Overall, the objective of this research is to develop a model that will adequately simulate

the dynamics of tsunami propagating across the continental shelf. In practical terms, a large
spatial domain with high resolution is required so that source areas and runup areas are
adequately resolved. Hence e�ciency of the model is a major issue. The ratio of water depth
to wavelength (H=L) is typically 0.1 for submarine fault ruptures and 0.4 for submarine
landslides. The waves then start as intermediate waves and become shallow water waves as
they propagate onshore, and become deep water waves as they propagate o�shore.
The model presented here is derived from a general set of three-dimensional hydrodynamic

equations. In the following sections, the mathematical and numerical formulations are de-
veloped and the results for several examples are presented in order of their computational
di�culty.

MATHEMATICAL FORMULATION

The general procedure in this development is to start with the Reynold’s averaged Navier–
Stokes equations (RANS) and end up with a set of vertically averaged equations similar
to the well known shallow water equations but containing extra pressure terms. As will be
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seen, the resultant model is almost as e�cient as traditional shallow water models but can
accommodate dispersive waves.
The initial governing equations are the RANS equation for an incompressible �uid, derived

from the Navier–Stokes equations by time-averaging over turbulent time scales to form an
equation for the mean value of the dependent variables. The Boussinesq approximation is used
so that density variations are included only in the gravity term. The equations are expressed in
a rotating frame of reference and the spatial domain includes a free surface. These equations
represent a three-dimensional form of the RANS equations that are suitable for geophysical
applications. Turbulence closure schemes are not considered here and a general eddy viscosity
formulation is employed. For simplicity, density is assumed to be constant.
In tensor form, the equations of momentum and mass conservation are
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+ 2�ijk�juk =−@p
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where the convention is used that repeated indices are summed, xi, i=1; 3 are distances (x; y; z)
along the coordinate axes in the east, north, and upward direction, respectively; uj(xi; t), j=1; 3
are velocity components (u; v; w) along the coordinate axes; �ijk is an alternating tensor [10];
�k are the components of the Earth’s angular velocity in the local coordinate system; p(xi; t)
is kinematic pressure; g is gravitational acceleration; �ij is the Kronecker delta which equals 1
if i= j and 0 otherwise; and Aj are eddy viscosity coe�cients.
Pressure is separated into a hydrostatic pressure ph and a dynamic (reduced or non-

hydrostatic) pressure q̂ such that p=ph + q̂ and by de�nition
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= − g; or ph =pa + g(�− z) (3)

where �(x; y; t) is the water-surface elevation measured from the vertical datum, and pa is
kinematic pressure (atmospheric) at the free surface. In the following, pa is neglected. Intro-
ducing these de�nitions, the governing equations become
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where D=Dt is a material derivative and hydrostatic pressure no longer appears in the vertical
momentum equation.
The equation for the free surface � is derived by an integration of the continuity equation

over water depth and application of the kinematic free surface and bottom boundary conditions:
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where h(x; y) is the land elevation measured from the vertical datum, and H = �(x; y; t) −
h(x; y) is the water depth. The vertical datum is arbitrary, but is usually set equal to the
average water surface elevation (sea level). This choice minimizes truncation errors in the
calculation of the water surface gradients.
These equations are solved with subject to conventional boundary conditions that include

stress and zero normal �ow conditions at solid boundaries, stress and pressure conditions at the
free surface, discharge or water-level conditions at river sources, and sea level and radiation
conditions at open boundaries. Neglecting atmospheric pressure, p= q̂=0 at the surface and
Dirichlet or Neumann conditions on pressure must be speci�ed at open boundaries.
Equations (4)–(6) form a closed system of equations for the �ve dependent variables u, v,

w, �, and q̂. At this point, they can be solved in three dimensions using a variety of methods,
such as those of Casulli and Zanolli [8] or Stelling and Zijlema [4]. This is the appropriate
course of action if the particular problem depends on details of the velocity �eld or internal
dynamics such as density intrusions. However, the interest here is on the propagation of
dispersive surface waves for which a depth-averaged formulation is expected to result in a
more e�cient numerical model.

Depth-averaged equations

The governing equations (4) and (5) are averaged over the water depth to derive a set
of governing equations similar to the two-dimensional shallow water equations but containing
additional terms. The depth integration will not be repeated here as it appears in many standard
references. However, the additional pressure terms will be treated in more detail, as this is
the important addition to the standard derivation.
The dynamic pressure is expressed in terms of a horizontal variation and a vertical pro�le

q̂(x; y; z; t)= q(x; y; h; t)f(z). Applying the Leibniz rule, the depth integral of the dynamic
pressure gradient in the horizontal momentum equation is
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where i=1; 2, and q̂�=0. Finally,
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where the constant � is the vertical average of f(z), and fh=f(h)=1. In this development,
f(z) is taken to be a linear function in order to maintain upward compatibility with linear
�nite element bases used in the full three-dimensional version of the model. Hence, �=0:5.
Depth-averaging (4) and using (8), the horizontal momentum equation becomes

Du
Dt
+ f × u=−g∇�− ∇(�q)− q

H
(�∇�+ (1− �)∇h)

+
1
H

∇ · (HA∇u)− �b
�H

(9)
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where u is the depth-averaged velocity, ∇ is the horizontal gradient operator, and �b is bottom
friction. Surface stress has been neglected. Bottom friction is written as

�b
�H

=
CD|u|u
H

= �u (10)

where CD is a drag coe�cient and � is de�ned by (10). The free surface equation simpli-
�es to

@�
@t
+∇ · (Hu)=0 (11)

Equations (9) and (11) with q=0 form the classical shallow water equations.
Next, the vertical momentum equation in (4) and the continuity equation (5) must be depth

averaged to derive governing equations for vertical velocity w and dynamic pressure q. The
former is

Dw
Dt

=
D
Dt

(
w� + wh
2

)
= − (q̂� − q̂h)

H
=
q
H

(12)

where w is the depth-averaged vertical velocity and the vertical viscous terms have been
neglected. Using linear interpolation in the vertical, w can be expanded into the second term
in (12), where wh is speci�ed by the kinematic bottom boundary condition.
The vertically integrated continuity equation is expressed as∫ �

h
∇ · u dz + w� − wh=0 (13)

This equation is written in �nite volume form when it is discretized.

NUMERICAL APPROXIMATION

The numerical model is a semi-implicit �nite-volume=�nite element scheme that expresses the
momentum equation in a Lagrangian form. Wetting and drying are included in the formulation.
This section describes the numerical implementation.
The time stepping approach is a split step method that �rst solves the equivalent of the shal-

low water equations to �nd an approximate solution, then solves for dynamic pressure and cor-
rects the approximate solution. The method of solving the shallow water equations (�rst step)
is described in detail elsewhere [5, 11, 12] and is similar to the methods in Reference [13].
A discussion of the stability of these methods can be found in Reference [14]. As a result,
this section presents an overview of the existing model, and focuses on the implementation
of the dynamic pressure solution.
The equations are discretized in time using a semi-implicit method such that the equations

are evaluated in the time interval (�t= tN+1 − tN ) where the superscript denotes the time
level. The distance through the interval is given by the weight 	.
The equations are approximated using standard Galerkin �nite element techniques [5, 11].

The equations are discretized after de�ning a set of two-dimensional triangular or quadri-
lateral elements in the horizontal plane. Mixed methods are used such that the elements use
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a piecewise constant basis function for �, and a constant normal velocity un on each edge with
a linear variation within the element [15]. These elements are known as the Raviart–Thomas
elements of lowest order.

First step

In the �rst step of the split step approach, the free surface and horizontal momentum equations
are solved without the dynamic pressure terms. The problem then reduces to solving the
shallow water equations to �nd an approximate solution at the new time step.
The free surface equation (11) is expressed in weighted-residual form. Because the basis

function for � is a piecewise constant, the continuity equation reduces to a �nite volume form
that conserves mass both locally and globally:

Ae
@�e
@t
+
∮
�e
(Hun) d�e =0 (14)

where subscript e denotes the value for a speci�c element; Ae is the element area; un is the
normal velocity on a side, positive outwards; and �e is the boundary of the element. The last
term has been converted from a divergence form to a line integral using the Gauss divergence
theorem.
Using a semi-implicit approach, (14) becomes
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�̃N+1e − �Ne
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+ 	

∮
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∮
�e
HNuNn d� (15)

which expresses the change in surface elevation as a function of the �uxes through the element
sides. The tilde denotes the approximate solution from the �rst step and the subscript n denotes
the component normal to an element side.
The momentum equation (9) is also expressed in weighted-residual form using �(x; y) as

the basis function for velocity. Integrating the resultant equation by a mid-side quadrature
rule on each element and using the discrete time operator from Equation (15), the momentum
equation becomes [5, 11]
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�(x; y; z) is the basis function for velocity, Ah is horizontal eddy viscosity, M is the mass
matrix given by M =

∫
� ��

T d�, � is the boundary of the computational domain �, and
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the pressure gradient term and the horizontal stress term have been integrated by parts. Note
that the term containing (∇H=H)(Ah∇u) has been omitted for simplicity. The line integrals
in these equations provide a convenient means to specify the boundary conditions on � and
horizontal stress.
Semi-Lagrangian methods are used in order to take advantage of the simplicity of Eulerian

methods and the enhanced stability and accuracy of Lagrangian advection methods [16]. The
superscripts N +1 and N denote variables evaluated at the �xed nodes in the Eulerian grid at
times tN+1 and tN . The superscript ∗ denotes a variable evaluated at time tN at the foot of the
Lagrangian trajectory extending from a computational node. At each time step, the velocity is
integrated backwards with respect to time to determine where a particle would be at time tN

in order to arrive at a grid node at time tN+1 [16]. The material derivative in Equation (9),
the �rst term, thus has a very simple form.
In order to make the model more e�cient, Equation (16) is used to eliminate ũN+1n from

the free surface equation (15). The resulting equation is in the form of a wave equation at
the discrete level and contains only � at the N + 1 time level:

Ae�̃
N+1
e − 	2�t2

∮
�e
HNA−1Ñ

N+1
n d�

= Ae�Ne − (1− 	)�t
∮
�e
HNuNn d�− 	�t

∮
�e
HNA−1Gn d� (17)

In practice, Equation (17) is assembled and solved for �̃N+1. Using these results, Equation (16)
is solved for ũN+1n . The full velocity is recovered by calculating the velocity at the vertices
of each element, then interpolating the tangential component of velocity at the midsides.
Note that in the discrete wave equation (17), water depth H is a factor in all the side

�ux terms. When H =0 (i.e. the side is dry), there is automatically no water �ux through
that side. When all sides of an element are dry, the water level is stationary in time. Hence,
wetting and drying are implemented without any special treatment.

Second step

In the second step, the momentum equations are inverted and used to replace un and w in the
continuity equation. The result is an equation for dynamic pressure q. Finally, un and w are
back-calculated from the solution for q. Presently, the free surface elevation is not corrected
so that �N+1 = �̃N+1.
The vertical velocity w and the dynamic pressure are approximated with piecewise constant

bases in the horizontal, the same bases that were used for �. The Galerkin form of the vertical
momentum equation then becomes

1
2

[
Dw�
Dt

+
Dwh
Dt

]
=
q
H

(18)

where w is approximated as a linear function in the vertical and a common factor of Ae has
been deleted from the equation. wh is determined from the kinematic boundary condition at
the bottom.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:721–737



728 R. A. WALTERS

Next, un and w are updated with the dynamic pressure terms as

uN+1n = ũN+1n −�t
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wN+1� = w̃N+1� +�t
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where �=0:5 because linear interpolation functions have been used for dynamic pressure and
w̃N+1� is determined by solving (18) with q = 0.
From the kinematic bottom boundary condition,

wN+1h = uN+1h · ∇h and w̃N+1h = ũN+1h · ∇h (21)

The continuity equation is expressed as the volume integral of (5) over an element. Hence
the surface integral of the horizontal velocity is balanced by the vertical �ux as∫∫

©
�e
un d�e + Ae(w� − wh)=0 (22)

Note that this expression is a direct integral of the �ux over the surface of a volume de�ned
by the element. This equation di�ers from the free surface equation (14) in that the kinematic
free surface and bottom boundary conditions are not used.
Next, the expressions for un and w are substituted into the �nite volume continuity equation

evaluated at time N + 1 to derive an equation for dynamic pressure.
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which can be rearranged as
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At this stage of development, wN+1h is approximated as w̃N+1h rather than using (21) and (19).
For test cases with a �at bed, this approximation makes no di�erence because w vanishes
at the bottom. For the other test cases, the di�erences between the estimated and corrected
velocities are not su�ciently large to create signi�cant errors. However, this approximation
requires further development.
There are three types of boundaries where conditions on q must be speci�ed: land (runup)

boundaries, open boundaries with incident waves, and radiating boundaries. The natural
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boundary condition for this �nite element implementation is @q=@n=0. This condition is
the appropriate condition for land boundaries. For open boundaries with water level speci�ed,
q=0 is imposed in the elements along the boundary. Thus the wave enters as a shallow water
wave and non-hydrostatic corrections are applied after a one element wide bu�er zone. At
open boundaries with radiation conditions the same strategy is used. There is a one element
wide bu�er zone where q=0 and a standard Sommerfeld radiation condition is applied at the
boundary. Various numerical tests such as the examples in the results section show that there
is no signi�cant re�ection from the open boundaries.
These equations are assembled in an element by element order and result in a matrix with

�ve diagonals for quadrilateral elements and four diagonals for triangular elements. For small
problems such as the test cases presented in the results, direct solvers can be used such as the
frontal solver used here [17]. For larger problems such as the tsunami problem presented in
the results, an iterative solver with preconditioner can be used such as a Bi-CG with MILU
preconditioner [18, 19].

RESULTS

The model using the hydrostatic approximation has been tested on a variety of problems
having analytical solutions or experimental data sets. For instance, see the examples for tidal
forcing in a polar quadrant and rectangular bay, and a transcritical �ow in Reference [5].
Those results show the general accuracy, e�ciency, and robust nature of the model. Here, the
depth-averaged non-hydrostatic approach is evaluated using a linear variation in the vertical
interpolation for dynamic pressure, q.
The �rst test case is a sinusoidal oscillation in a closed basin, similar to the test case in

Reference [4]. The purpose of this test case is to evaluate the phase speed determined in the
model and compare that to the results from wave theory which are given as

c= csw

(
tanh(kH)
kH

)1=2
and csw = (gH)1=2 (25)

where c is phase speed, k is wavevector and csw is shallow water phase speed. The basin
is 10m long giving a wavelength of 20m and the water depth is varied from 1 to 20m
covering the range from shallow to deep water waves. The initial condition is a cosine water
level variation with �=0:1 at one end of the basin, and the negative of this at the other end
of the basin. The basin oscillates with period T =2L=c, where T is period and L is basin
length. The basin is discretized with uniform quadrilateral elements with side length of 0.1m.
The time step is 0.01 s.
The results for phase speed are shown in Figure 1, where the solid lines are the results from

linear wave theory and the symbols are the results from the model. As may be seen, the model
results begin to deviate from theory at about H=L = 1

2 , similar to the range of applicability
of Boussinesq models [3, 4]. Moreover, the execution time for the non-hydrostatic model was
only 1.8 times that of the shallow water model (the direct matrix solver for q is faster than
the iterative solver for � for small problems such as this).
For monochromatic waves, the model results can be improved considerably. The vertical

variation in pressure determined by linear wave theory (hyperbolic functions) can be used
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Figure 1. Phase speed as a function of depth, evaluated from the oscillating basin test case. Solid line is
phase speed determined analytically from linear wave theory. Dashed line is the phase speed determined
analytically for the shallow water limit. Symbols are the phase speed determined from the model for

the shallow water equations, and for the non-hydrostatic approximation.

instead of the linear functions used here. However, this approach is only of academic interest
because �eld problems typically exhibit a wide range of wavelengths so that the choice of
vertical variation is ambiguous. Nonetheless, there may be other vertical functions that give
improved results over the linear functions used here, although compatibility issues between
vertical variations in velocity and pressure arise when adopting higher order interpolation
schemes. This line of research has not been pursued here.
The second test case is the propagation of a solitary wave along a straight channel with

constant depth [4]. This problem is of particular importance for tsunami propagation since
these waves can travel long distances as solitary waves. For the test, the initial water surface
elevation is given by

�=A sech2
[(

3A
4d3

)1=2
(x − ct)

]
(26)

and the velocity is given in Reference [4] as

u=
c�
H

(27)

w=−z @u
@x

(28)
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where A = 2:0m is amplitude, d is depth from still water level, and c=(gH)1=2. The still
water depth is 10m. The problem is discretized with uniform quadrilateral elements with 1m
side length. The time step is 0.1 s.
With shallow water models, there is an over steepening of the front face of the waves, a

reduction in amplitude, and overall unrealistic results. The results of the depth-averaged non-
hydrostatic model give excellent results with a maintenance of the waveform, small trailing
waves, and small reduction in amplitude (Figure 2).
The third test case is the Beji and Battjes experiment [20] with a wave propagating over a

bar in a channel. The bottom topography is shown in Figure 3 where the wave enters from
the left, and is dissipated on the slope on the right. The still water depth is 0.4m and shoals
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Figure 2. Propagation of a solitary wave along a long channel.
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Figure 3. Schematic for the Beji and Battjes experiment. Water level is plotted at 40 s after the start of
the experiment. The beach is truncated to allow waves to be radiated from the right boundary.
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to 0.1m over the bar. The front face of the bar has a 1:20 slope and the back side has a 1:10
slope. There is wave absorption on the 1:25 slope that represents a beach. Figure 3 shows
the case where the depth at the beach has been limited to 0.2m in order to apply a radiation
condition at the right boundary.
The �ume is discretized with regular quadrilateral elements with side length of 0.0125m.

The time step is 0.025 s. The incident wave has an amplitude of 0.01m and period of 2.02 s.
Three methods are used to approximate the beach. One method used a non-absorbing beach
where runup and rundown occur. A second method allowed partial re�ection from the beach
slope by limiting the minimum depth to 0.2m as the right boundary is approached and
applying a radiation condition. A third method used a constant depth of 0.4m to the right of
the bar and the entire wave was radiated. For the �rst, there were no stability problems with
wetting and drying, and the waves were re�ected back into the �ume causing a modulation
of water levels. For the second and third methods, a condition of q=0 (hydrostatic) was
speci�ed in the last element and a Sommerfeld radiation condition was applied. This approach
performed well without discernable re�ected waves.
The model results for the three methods of approximating the beach were compared to

the observations. The comparison indicated that there was some re�ection from the beach
during the experiment, but less than the full re�ection from using method 1 and more
than full radiation from using method 3. Hence the second method was adopted where
there is some re�ection from the toe of the beach and the wave is mostly radiated. The
results were not found to be sensitive to the exact details of the geometry of the
beach.
The results for surface water elevation at 40 s after the experiment started are shown in

Figure 3. The waves propagate inward from the left boundary and become steepened and
distorted when they encounter the bar. The short wavelength components travel more slowly
than the main waveform so they tend to lag. The waves are then propagated as free waves on
the back side of the bar and exhibit an irregular wave pattern due to the di�erent phase speeds.
As noted by Stelling and Zijlema [4], modelling this pattern correctly places heavy demands on
the accuracy of the computed dispersion relation. Furthermore, traditional hydrostatic models
give a totally incorrect wave pattern.
The results for the model and the observations at the wave gauges used in the exper-

iment are shown in Figure 4. The model results are reasonably accurate with the largest
discrepancies located between the back of the bar and wave absorber (Gauge 9, Figure
4) as would be expected. The source of the discrepancies is not clear. On the one hand,
there are uncertainties in the representation of an absorbing beach (see above). On the
other hand, there are unknown errors in the model results. In contrast to the represen-
tation here, Stelling and Zijlema [4] approximate the beach as a constant depth channel
with a sponge layer at the end. Using a two layer approach, their results have about the
same accuracy but increased high frequency content as compared to the observations or the
results here.
The fourth example is a �eld-scale problem simulating the propagation of a tsunami gen-

erated by a submarine fault rupture on the New Zealand continental shelf. The location of
the fault is near the town of Kaikoura on the northeast coast of the South Island of New
Zealand (Figure 5). The area is characterized as the convergence zone between the Paci�c
and Australian plates and the fault is a thrust fault on the continental slope at a depth of
about 1000m. The fault is about 100 km long and 10 km wide, and has a maximum vertical
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Figure 4. Model results (solid line) and observations (symbols) for the Beji and Battjes experiment.

displacement of 4m (Figure 6). The fault displacement shown in Figure 6 was used as the
initial condition for water surface elevation.
Using the width of the fault displacement as an estimate of wavelength, the depth to

wavelength ratio is about 0:1 (kH =0:6) or slightly above the upper limit of shallow water
theory. However, the wave contains shorter wavelength components due to an asymmetric
distortion on the fault. Hence a basic issue in this simulation is to determine how accurately
shallow water models can reproduce a typical fault-generated tsunami.
The model grid was constructed from a NIWA bathymetric data base for the continental

shelf and o�shore areas, and from a GPS survey of the dry land up to an elevation of 20m
above MSL. The model grid was generated using programs described in Reference [21], and
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Figure 5. Water depth along the Kaikoura coast. The head of the submarine canyon is at 173.6 E
longitude and 42.5 S latitude. For scale, the coastline is approximately 200 km long.

Figure 6. Speci�ed initial water surface elevation. Sites where sea level is plotted in Figures 7 and 8
correspond to the numbered symbols along the path of wave propagation.

contains 513 284 nodes and 1 021 434 triangular elements. Element size varies from about 20m
in the land runup areas, to 400m near the fault, and to 600m along the o�shore boundary.
The sites identi�ed by symbols in Figure 6 are numerical water level gauges where the

results from the various model approximations are compared. For the shoreward propagating
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wave, the model results are compared for the shallow water model and the non-hydrostatic
model in Figure 7. For the o�shore propagating wave, the results are compared in Figure 8.
Initially, the water elevation is speci�ed (Figure 6) and the velocity is zero. This ini-

tial condition gives rise to two waves propagating in opposite directions. As the shoreward
propagating wave shoals, its speed decreases and its height increases. The di�erences in the
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Figure 7. Evolution of shoreward propagating tsunami. Shallow water version (solid), non-hydrostatic
version (dashed).
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Figure 8. Evolution of o�shore propagating tsunami. Shallow water version (solid), non-hydrostatic
version (dashed).
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results from the shallow water version and the non-hydrostatic version of the model are due
to the dispersive nature of the waves (Figure 7). Initially the trailing side of the wave is
steeper because of the initial wave shape. For the shallow water version, phase speed is
only dependent on the height of the wave so the crest travels faster than the trailing slope
and the entire wave steepens on its forward face as it propagates shoreward (from 0 to
6 in Figure 7). For the non-hydrostatic version, the short wavelength components have a
slower phase speed and the wave attains a form similar to a solitary wave. At the shore-
ward site (6 in Figure 7), the wave height is about 20% smaller than the shallow water
wave. When the waves have �nally steepened into a bore directly inshore from the source
area, there is little di�erence in their shape and the height is less for the dispersive wave
(7 in Figure 7).
For the o�shore propagating wave, the di�erences are more pronounced (Figure 8). With

the shallow water version of the model, the wave incorrectly maintains a steep leading face
because phase speed is only dependent on the height of the wave. With the non-hydrostatic
version of the model, the wave evolves toward a shape similar to a solitary wave and the
short wavelength components lag behind.
As a result, dispersive e�ects signi�cantly modify the shape of the tsunami for both the

onshore and o�shore propagating waves. Depending on location along the shore, the runup
may be reduced. However, the tsunami propagating o�shore (a remote tsunami at a distant
location), is modi�ed considerably by dispersive e�ects.

CONCLUSIONS

The model presented here meets the objectives of reasonable accuracy, e�ciency, and robust-
ness in the simulation of dispersive surface gravity waves. Several test cases were used to
evaluate the accuracy of the dispersion relation, including an oscillating basin, solitary wave
propagation, and the Beji and Battjes experiment. A �eld scale simulation of a tsunami gen-
erated by a fault rupture showed that dispersive e�ects are signi�cant, particularly for the
o�shore propagating wave. Shorter wavelength tsunami such as those generated by submarine
landslides would be expected to show even greater e�ects.
Further research along several lines may improve the model accuracy and performance. First,

there may be other vertical approximation functions for pressure that give improved results
over the linear functions used here. However, compatibility issues between vertical variations
in velocity and pressure arise when adopting higher order interpolation schemes so that this
avenue is not straightforward. In the end, the best approach may be to use more vertical layers
such as demonstrated by Stelling and Zijlema [4]. Second, better approximation methods may
improve the accuracy of the corrected vertical velocity and provide a stable method to correct
the sea level solution. Finally, the e�ciency of the model depends to a great extent on the
e�ciency of the iterative matrix solver for dynamic pressure. Any improvements in the solver
would directly bene�t the model.
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